
US NDC Modernization
SAND-xxxx
Unclassified Unlimited Release
December 2014

US NDC Modernization Iteration E1
Prototyping Report: Common Object
Interface

Version 1.1

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2014-20568R

SAND-xxxx Page 2 of 28

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

SAND-xxxx Page 3 of 28

SAND-xxxx
December	2014

US NDC Modernization Iteration E1 Prototyping Report:

Common Object Interface

Jennifer	E.	Lewis
Michael	M.	Hess

Version	1.11
Sandia	National	Laboratories

P.O.	Box	5800
Albuquerque,	New	Mexico		87185

ABSTRACT

During	the	first	iteration	of	the	US	NDC	Modernization	Elaboration	phase	(E1),	
the	SNL	US	NDC	modernization	project	team	completed	an	initial	survey	of	
applicable	COTS	solutions,	and	established exploratory	prototyping	related	to	
the	Common	Object Interface	(COI) in	support	of	system	architecture	definition.
This	report	summarizes	these	activities	and	discusses	planned	follow-on	work.

REVISIONS DECEMBER 2014

SAND-xxxx Page 4 of 28

REVISIONS

Version Date Author/Team Revision Description Authorized by

1.0 3/21/2014 US	NDC	Modernization	Team Initial	Release M.	Harris

1.1 12/19/2014 IDC	Reengineering	Team IDC	Release M.	Harris

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 5 of 28

TABLE OF CONTENTS

US NDC Modernization Iteration E1 Prototyping Report: Common Object
Interface .. 3

Abstract ... 3

Revisions ... 4

Table of Contents .. 5

1. Overview ... 7

2. Schedule.. 7

3. Motivation .. 8

4. Common Object Interface... 8

4.1. Definition ..8

4.2. Design Goals ...8

4.3. Constraints..9

4.4. Iteration E1 Prototyping Activities...9

4.4.1. Initial COTS Survey ...9

4.4.1.1. Hibernate ..10

4.4.1.2. Open JPA...11

4.4.1.3. Apache Cayenne..11

4.4.1.4. Apache Empire-DB ..12

4.4.1.5. Apache Torque ..12

4.4.1.6. ODB...12

4.4.1.7. QxORM..13

4.4.2. Exploratory Prototyping...14

4.4.2.1. Hibernate ..14

4.4.2.1.1. Installing Hibernate...14

4.4.2.1.2. Connecting to the Oracle database ...15

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 6 of 28

4.4.2.1.3. Mapping database data to Java objects ..15

4.4.2.1.3.1. Mapping using XML...15

4.4.2.1.3.2. Mapping using Java annotations ...16

4.4.2.1.4. Mapping in practice ..16

4.4.2.1.5. Retrieving data ...17

4.4.2.2. ODB...17

4.4.2.2.1. Installing ODB ...17

4.4.2.2.2. Connecting to the Oracle database ...18

4.4.2.2.3. Mapping database data to C++ objects ...18

4.4.2.2.4. Mapping using pragma language ..18

4.4.2.2.5. Mapping in practice ..19

4.4.2.2.6. Retrieving data ...21

4.5. Conclusions...22

4.6. Follow-On Work..22

References... 24

Appendix A. Summary Of Initial Survey.. 26

OVERVIEW DECEMBER 2014

SAND-xxxx Page 7 of 28

1. OVERVIEW

The	US	NDC	Modernization	project	statement of	work	identifies the	definition	of	
a	modernized	system	architecture as	a	central	project deliverable.	 As	part	of	the	
architecture	definition activity,	the	Sandia	National	Laboratories	(SNL)	project	
team has	established	an	ongoing,	software	prototyping	effort	to	support	
architecture	trades	and	analyses,	as	well	as	selection	of	core	software	
technologies.

During the	first	iteration of	the	US	NDC	Modernization	Elaboration	phase (E1),	
spanning	Q1	- Q2	FY2014, the	prototyping	effort included initial	COTS	surveys	
and	exploratory	prototyping addressing	three	core	elements	of	the	system	
architecture:

1. The	Common	Object	Interface	(COI) provides	the	system	and	research	
tools	with	access	to	persistent	data	via	an	abstraction	of	the	underlying	
storage	solutions.

2. The	processing	control	framework provides	for	the	definition,	
configuration,	execution	and	control	of	processing	components	within	the	
system,	supporting	both	automated	processing	and	interactive	analysis.

3. The	User	Interface	Framework (UIF) provides	a	flexible	platform	for	the	
definition	of	extensible	graphical	user	interface	(GUI)	components	&
composition	of	GUI	displays	supporting	users	of	the	system	and	research	
tools.

This	report	summarizes	the	iteration	E1	prototyping	activities of	the	SNL	project	
team	specific	to	the Common	Object	Interface. E1	prototyping	activities	for	the	
processing	control	framework	and	UI framework	are	described	in	separate	
reports.

2. SCHEDULE

This	report	summarizes	the	COI	prototyping	work	completed	during	the	three-
month	period	from	December	2013	to	February	2014,	based	on	the	following	
schedule.

Period Activity

December 2013 OSS/COTS survey

January – February 2014 Initial Exploratory Prototyping

MOTIVATION DECEMBER 2014

SAND-xxxx Page 8 of 28

3. MOTIVATION

Prototyping	provides	input	critical	in	the	definition	of	the	system	architecture,	
supporting selection	of	core	software	development	languages	and	technologies,	
identification	of	architecture	constraints	&	assumptions,	and	definition	of	high-
level	design	patterns. In	addition,	the	prototyping	activity	provides	a	foundation	
for	development	of	the	executable	architecture	deliverable.	

4. COMMON OBJECT INTERFACE

4.1. Definition

The	Common	Object	Interface	(COI)	is	a	core	software	mechanism	providing	
access	to	persistent	data	within	the	system architecture.	The	COI	provides	an	
abstraction	of	the	underlying	data	storage	solutions,	and	includes	the	following	
major	elements:

 An	application	data	model encapsulating	the physical	representation	of	
persistent	data.	All	persistent	data	in	the	system	will	be	accessed	by	the	
application	software	through	the	COI.	

 An	Application	Programming Interface	(API)	providing	
Search/Create/Read/Update/Delete	(SCRUD)	functionality	via	the	
application	data	model	for	the	system applications	and	research	tools.	

4.2. Design Goals

 Minimize	dependencies	between	the	system application/research	tools and	
underlying	data	storage	solutions.

 Decouple	the	application	data	model	from	the	physical	data	model	(e.g.	DB	
schema).

 Provide	a	query	language	that	is	independent	of	the	underlying	data	storage	
solution.

 Provide	optimizations	as	needed	to	support	system	performance	
requirements	– e.g.	in-memory	caching.

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 9 of 28

 Support	the	storage	solutions	defined	for	the	modernized	system.

 Support	the	application	languages	defined	for	the	modernized	system.

4.3. Constraints

 Performance:	the	COI	must	not	slow	down	the	Analyst's	work	nor	introduce a	
bottleneck	within	automatic	processing.

 Concurrency:	the	COI	must	support	multiple,	concurrent	SCRUD	operations	
against	the	underlying	data	storage	solution(s).

 Interfaces	with	other	frameworks: the	COI	must	interface	with	the	
processing	control	framework	as	well	as	the	GUI	framework.

 Hardware:		the	solution	must	not	be	hardware	dependent	and	must	be	able	
to	run	on	a	standalone	or	distributed	system.

 COTS:	Prefer	Open	Source	Software	(OSS)	and	other	Commercial	Off-The-
Shelf	(COTS)	solutions	to	custom	software	development	where	available.

 Standards:	Prefer	solutions	based	on	open	standards	wherever	possible.

4.4. Iteration E1 Prototyping Activities

Iteration	E1	prototyping	activities	focused	on	surveying	COTS	software	solutions	
(principally	open	source	software)	addressing	the	requirements	and	constraints	
identified	thus	far	for	the	COI.	Candidate	solutions	were	identified	through	
online	research	into	available	COTS/open	source	projects	and	tools,	and	through	
discussions	with	other	SNL	project	teams	knowledgeable	in	COTS	solutions	for	
applications	of	similar	scale.	

Note	that	the	survey	results	presented	here	are	not	exhaustive;	they	represent	
an	initial	effort	constrained	to	the	available	E1	schedule	and	staffing	resources.	
Identification	and	evaluation	of	candidate	software	solutions	is	intended	to	be	an	
ongoing	activity	during	the	elaboration	phase,	as	development	of	the	
architecture	definition	and	executable	architecture	prototype	progress.	

Once these	survey	results	were	summarized	and	assessed,	two	COTS	products,	
Hibernate	and	ODB,	were	selected	for	more	thorough	evaluation.	

4.4.1. Initial COTS Survey

A	goal	of	the	system prototyping	effort	is	to	leverage	COTS	products	where	
possible. A	range of	software	solutions	exist	that	provide	part of	the	functionality	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 10 of 28

needed	by	the	COI,	particularly	within	the	ORM	(Object	Relational	Mapping)
domain.	

ORM	software	attempts	to	overcome the	object-relational	impedance	mismatch	
difficulties	encountered	when	an	object-oriented	program	is	using	data	
persisted	in	a	relational	database	structure. This	mismatch	occurs	when	
applications	are	using	objects,	which	have	both	data	and	behavior,	in	
conjunction	with	relational	technologies	focused	on	data	storage	and	
manipulation	within	a	database	[1,	5].	The	lack	of	a	direct	mapping	between	
these	two	technologies	leads	to	difficulties	when	applications	utilize	both	
paradigms. While	ORMs	may	not	be	able	to	handle	all	of	these	mapping	related	
issues,	they	typically	can	handle	80-90%	of	them	[2].

In	addition,	many	of	these	products	provide	solutions	for	common	database	
support	needs	including	caching,	transaction	control,	and	concurrency	
management.	While	ORM	software	would	not	provide	all	of	the	functionality	
needed	by	the	COI,	it	would	provide	a	solid	foundation	that	could	be	expanded	to	
encompass	system specific	needs.	

Currently,	ORM	solutions	support	multiple	databases,	but	none	of	the	surveyed
ORM	solutions support	more	than	one	language.	We	focused	our	survey	on	the	
solutions	implemented	in	Java	and	C++.		

See	Table	1. COI	Survey	Summary in 4.6.Appendix	A		for	a	listing	of	surveyed	COTS	
solutions	and	summary	of	survey	findings.

4.4.1.1. Hibernate

Hibernate	is	the	clear	leader	for	ORM	software	implemented	in	Java.	It	has	an	
engaged	user	community,	is	under	active	development	(part	of	JBoss),	and	has	
extensive	documentation	available	both	via	online	communities	and	tutorials	
and	in	published	literature.	

Hibernate	provides	an	abstraction	of	the	underlying	database	schema	through	a	
framework	for	mapping	an	object-oriented	domain	model	to	a	traditional	
relational	database.	These	mappings	can	be	specified	either	by	using	Java	
annotations	or	via	XML.	Because	Hibernate	supports	reverse	engineering,	an	
initial	mapping	can	be	generated	from	an	existing	database	schema	that	can	then	
be	modified	to	meet	project	needs	moving	forward.	

Hibernate	is	a	JPA	(Java	Persistence	API)	provider.	This	JPA	compliance	ensures	
adherence	to	this	accepted	standard	and	could	ease	future	transition	to	other	
JPA	providers,	if	needed.	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 11 of 28

Like	most	ORM	software,	Hibernate	provides	support	for	multiple	database	
backend	solutions.	However,	the	only	language	Hibernate	supports	is	Java.	
(cpphibernate	purports	to	support	a	C++ interface	to	Hibernate,	but	it	does	not	
appear	to	have	an	active	community.)

In	addition	to	supporting	mapping	database	objects	to	Java	objects,	Hibernate	
includes	database	transaction	solutions	such	as	transaction	and	concurrency	
control,	batch	processing,	caching,	locking,	etc.	Custom	implementations	of	these	
solutions	can	dominate	a	project’s	development	and	maintenance	schedule;	
receiving	them	as	part	of	an	ORM	software	package	is	an	added	advantage	to	
using	such	a	solution.	

Hibernate	provides	its	own	query	language,	HQL	(Hibernate	Query	Language).	
This	allows	users	and	applications	with	a	standardized	means	of	requesting	data	
that	Hibernate	can	convert	into	the	correct	“dialect”	for	the	underlying	database.	

This	rich	feature	set	is	what	guided	the	COI	prototyping	team	to	explore	
Hibernate	in	more	detail.	

4.4.1.2. Open JPA

OpenJPA	is an	ORM	and	JPA	provider	written	in	Java	that supports	multiple	
database	backend	solutions. Persistence	metadata	(mapping)	is	specified	using	
Java	5 annotations,	XML	files,	or	both.		

This	project	is	part	of	the	Apache	Software	Foundation,	and	appears	to	be	under	
active	development	(latest	software	release:	April	2013).	However,	OpenJPA’s	
user	community	does	not	have	the	same	level	of	engagement	as	Hibernate,	and	
the	number	of	related	publications	is	considerably	less	(Open	JPA	is	mentioned	
in	sections	in	books	as	opposed	to	the	entire	focus	of	a	book as	is	the	case	with	
Hibernate).	

OpenJPA	provides	low-level	access	to	the	database	through	the	use	of	SQL	
statements	embedded	in	code.	Given	that	this	system	modernization	effort	is	
attempting	to	move	away	from	embedded	SQL	statements,	the	COI	prototyping	
team	did	not	select	OpenJPA for	further	exploration	as	part	of	E1.		

4.4.1.3. Apache Cayenne

Apache	Cayenne	is	an	ORM	that	includes	additional	support	for remote	object	
persistence	and/or	object	serialization.	Cayenne	is	implemented	in	Java	and	
supports	multiple	database	backend	solutions.	Instead	of	using	annotations	or	
XML	to	manage	the	mapping	from	database	data to	Java	objects,	Cayenne	uses	a	
proprietary	Cayenne	Modeler. Cayenne	also	supports	other	database	interaction	
features	(e.g.	querying,	caching).	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 12 of 28

Apache	Cayenne	is	under	active	development	(latest	release:	February	2014),	
but	it	does	not	appear	to	have	a	substantial	user	base	on	par	with Hibernate.	
Like	OpenJPA,	it	does	not	have	many	publications	devoted	solely	to	its	use,	and	
its	online	documentation	is	unimpressive.	

Because	Apache	Cayenne	lacks	the	rich	set	of	features	found	in	Hibernate,	the	
COI	prototyping	team	opted	not	to	explore Cayenne beyond	the	initial	survey	as	
part	of	E1.	

4.4.1.4. Apache Empire-DB

Another	Apache	ORM	product	is	Empire-DB	which	is	less	of	an	ORM	and	more	of	
a	relationship	database	abstraction	layer.	This	software uses	dynamically-
generated SQL	as	the	cornerstone	of	its	approach	to	modeling	database	entities	
in	Java	objects.	

While	this	tactic	can	lead	to	highly	efficient	and	optimized	database	interactions,	
it	does	not	lend	itself	to	a	loose	coupling	between	application	code	and	the	
underlying	database	layer. This	tight	coupling,	combined	with	this	project’s	lack	
of	active	development,	convinced	the	COI	prototyping	team	not	to	explore	this	
software	beyond	the	initial	survey as	part	of	the	E1	prototyping	effort.	

4.4.1.5. Apache Torque

Apache	Torque	is	an	ORM	written	in	Java.	Instead	of	utilizing	annotations	or	XML	
to	define	the	mapping	from	database	data	to	Java	objects,	Torque	generates	
classes	from	an	XML	schema	and	DTD	that	describe	the	database	schema.	While	
this	method	allows	Torque	to	support	multiple	database	backend	solutions,	and	
avoids reflection,	the	documentation	indicates	that	Torque	performs	best	if	no	
“exotic”	features	of	the	underlying	database	are	used.	

Torque’s	requirement	that	the	domain	model	classes	extend	Torque	specific	
classes	introduces	a	tight	coupling	between	Torque	and	the	system	within	which	
it	is	used.	This	sort	of	coupling	leads	to	difficulties	if	Torque	must	be	replaced	
with	a	different	ORM	solution	at	a	future	time.	

The intrusive	nature	of	this	software limits	future	development	flexibility.	The	
requirement	of	this	tight	coupling,	combined	with	an	apparent	decline	in	interest	
based	on	internet	trends, persuaded	the	COI	prototyping	team	not	to	explore	this	
software	beyond	the	initial	survey as	part	of	E1.	

4.4.1.6. ODB

ODB,	developed	by	Code	Synthesis,	is	the	clear	leader	for	ORM	software	
implemented	in	C++.	It	has	an	engaged	user	community,	is	under	active	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 13 of 28

development,	and	has	extensive	documentation	available	online	and	in	PDF	
format.	

Used	by	companies	such	as	Symantec,	Intel,	Lockheed	Martin,	et.al.,	ODB	
provides	a	C++	object	to	relational	database	mapping while	requiring	neither	
manually	written	code	nor	direct	access	to	database	tables,	columns,	or	query	
language	directly.	These	mappings	are	specified	using	ODB	pragmas	placed	
either	inline	in	C++	header	files	or	in	separate	header	files	making	the	object-
relational	mapping	non-intrusive.		ODB	pragmas	are	simply	a	pragma-based	
language	used	to	capture	database-specific	information	about	C++	types.	

Like	most	ORM	software,	ODB	provides	support	for	multiple	database	backend	
solutions	such	as	MySQL,	SQLite,	PostgreSQL,	Oracle,	and	Microsoft	SQL	Server;	
and	supports	C++98/03	and	C++11	standards.	Software	libraries,	such	as	Boost	
and	Qt,	can	be	integrated allowing	use	of	value	types,	containers,	smart	pointers,	
etc.	However,	the	only	language	ODB	supports	is	C++.		

ODB	supports	both	unidirectional	(to-one,	to-many)	and	bidirectional	(one-to-
one,	one-to-many,	and	many-to-many)	mappings	between	database	tables	and	
C++	objects. ODB	also	provides	additional	features such	as	transaction	and	
concurrency	control,	caching	of	DB	connections,	prepared	SQL	statements,	and	
buffers	for	improved	performance.	Custom	implementation	of	these	features,	
once	again,	provides	an	added	advantage	of	using	such	a	solution.	

ODB	provides	use	of	its	C++	integrated	query	expression	and	database-native	
SQL	SELECT	query	expression	allowing	both	users	and	applications	a	
standardized	means	of	requesting	data	from	the	underlying	database(s).	

This	rich	feature	set	is	what	guided	the	COI	prototyping	team	to	explore	ODB	in	
more	detail.

4.4.1.7. QxORM

QxORM	is	another	ORM	for	the	C++	language	and	supports	multiple	database	
backend	solutions.	Instead	of	using	C++	pragmas	to	manage	the	mapping	from	
database	data	to	C++	objects,	QxORM	makes	extensive	use	of	C++	macros	and	
templates.	

QxORM	is	under	active	development	(latest	release:	March	2013),	but	it	does	not	
appear	to	have	as	large	a	user	base as	ODB.	Unlike	ODB,	QxORM’s	documentation	
is	quite	limited	and	its	users	are	not	listed	on	QxORM’s	website.

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 14 of 28

4.4.2. Exploratory Prototyping

For	the	exploratory	prototyping	phase	of	this	work,	the	COI	team	delved	more	
deeply	into	both	Hibernate	and	ODB.		The	goal	of	this	exploration	was	to	learn	
more	about	these	particular	products,	assess	their	utility	for	the	system
modernization	effort,	and	gather	information	to	aid	in	planning	the	path	
forward.	

Hibernate	and	ODB	are	the	clear	leaders	in	ORM	technology	for	Java	and	C++,
respectively.	They	are	under	active	development,	have	extensive	documentation	
and	engaged	user	communities.	Both provide	some	of	the	capabilities	needed	
within	a	COI.	While	all	of	the	surveyed	software	provided	multiple	database	
backend	support,	no	software	was	identified	that	provides	support for more	
than	one	programming	language.		

For	both	Hibernate	and	ODB,	the	COI	team	wanted	to	assess	the	difficulty	of	
mapping	existing	database	tables	to	objects,	particularly	mapping	multiple	
tables	to	a	single	object.	This	proved	to	be	intuitive	and	straightforward	using	
both	Hibernate	and	ODB.	For	Hibernate,	mapping	using	annotations	were	easier	
to	use	than	XML	mappings.	For	both	explorations,	data	was	mapped	from	classes
to	data	in	an	Oracle	database.	

Based	on	the initial	exploration,	Hibernate	and	ODB	were	found	to	support	many	
of	the	goals	of	the	COI	effort.	Both	decouple	the	application	data	model	from	the	
physical	data	model	by	providing	classes	that	applications	use	to	interact	with	
the	underlying	data	storage	solution.	While	Hibernate	provides	a	query	language	
(HQL),	ODB	provides	its	database class’ query()method, both	of	which	are	
agnostic	to	the	underlying	database	and	can	be	used	by	both	operational	
applications	and	research	tools. Also,	ODB	offers	integration	with	Boost	C++	
libraries	in	order	to	use	their	value	types,	containers,	and	smart	pointers	in	
persistent	C++	classes.	 Hibernate	and	ODB	purport	to	provide	optimizations	to	
support	performance	requirements	(not	investigated	in	E1),	and	support	
multiple	storage	solutions.

4.4.2.1. Hibernate

4.4.2.1.1. Installing Hibernate

Because	Hibernate	is	written	in	Java,	installation	involved	unzipping	the	
Hibernate	distribution	zip	file	and	including	the	Hibernate	jar	files	on	the	Java	
classpath.	The	Hibernate	software	distribution	included	a	variety	of	examples	
that	were	all	configured	to	access	an	in-memory	database.	Thus,	it	was	
straightforward	to	verify	the	installation	and	begin	to	learn	about	basic	
Hibernate	functionality.	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 15 of 28

4.4.2.1.2. Connecting to the Oracle database

Hibernate	manages	the	information	needed	to	connect	to	the	database	via	an	
xml	configuration	file	(hibernate.cfg.xml).	The	tutorials	included	with	Hibernate	
included	this	file;	specifying	the	information	needed	to	connect	to	the	Oracle	
database	involved	copying	and	modifying	the	following	entries	in	that	file:	

<!-- Database	connection	settings	-->
<property	name="connection.driver_class">oracle.jdbc.driver.OracleDriver	
</property>
<property	name="connection.url">jdbc:oracle:thin:@bambi:1521:kbdb</property>
<property	name="connection.username">lewisje</property>
<property	name="connection.password">******</property>

<!-- SQL	dialect	-->
<property	name="dialect">org.hibernate.dialect.Oracle10gDialect</property>

Many	other	database	configuration	parameters	can	be	set	in	this	file,	but	these	
were	the	minimum	needed	to	connect	to	the	Oracle	database.	

4.4.2.1.3. Mapping database data to Java objects

Hibernate	supports	two	different	ways	to	specify	mappings	between	database	
data	and	Java	objects:	XML	mappings	and	Java	annotations.

4.4.2.1.3.1. Mapping using XML

A	benefit	to	XML	mappings	is	that	these	mappings	reside	outside	of	the	code	for	
the	Java	object	representing	the	database	data.	Given	a	small	enough	database	
schema	change	(e.g.	renaming	a	column),	the	XML	mappings	could	be	updated	
and	no	code	recompilation	would	be	required.		The	downside	is	that	the	
mappings	can	be	difficult	to	generate,	understanding	those	mappings	requires	
an	understanding	of	the	associated	Java	objects,	they	must	be	kept	in	synch	with	
the	Java	objects,	and	most	changes	to	the underlying	database	schema	will	
require	changes	to	both	the	XML	mappings	and	the	Java.	

To	indicate	that	XML	mappings	are	being	used,	information	similar	to	the	
following	must	be	included	in	the	hibernate.cfg.xml	file:

<!-- Mapping	information	-->
<mapping	resource="usndc/coi/data/EventHypothesis.hbm.xml"	/>

The	indicated	EventHypothesis.hbm.xml	file	is	where	the	mapping	information	
resides.	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 16 of 28

4.4.2.1.3.2. Mapping using Java annotations

Java	annotations	are	a	form	of	“syntactic	metadata	that	can	be	added	to	Java	
source code” [6].		These	annotations	reside	within	the	Java	code	for	the	Java	
classes	that	are	mapped	to	the	underlying	database.	This	does	require	a	
recompile	whenever	changes	to	the	database	require	changes	to	the	mapping,	
but	it	produces	clean,	easy-to-understand	code	that	only	needs	to	be	maintained	
in	a	single	location.

To	indicate	that	annotations	are	being	used,	information	similar	to	the	following	
must	be	included	in	the	hibernate.cfg.xml	file:

<!-- Mapping	information	-->
<mapping	class="usndc.coi.hibernate.data.EventHypothesis"/>

The	indicated	class	is	where	the	mapping	information	resides.

4.4.2.1.4. Mapping in practice

The	primary	goal	of	this	phase	of	exploratory	prototyping	with	Hibernate	was	to	
determine	how	to	map	multiple	database	tables	to	a	single	Java	class.	The	Oracle	
database	contained	both	an	ORIGIN and	ORIGERR table.	Data	from	these	tables	was	
used	to	populate	fields	in	an	EventHypothesis	class.	

Below	is	an	example	of	how	this	was	accomplished	using	annotations:

@Entity
@Table(name	=	“origin”)
@SecondaryTables(

{	@SecondaryTable(name	=	“origerr”,	pkJoinColumns	=	
{	@PrimaryKeyJoinColumn(name	=	"orid",	referencedColumnName	=	"orid")	})	})

public	class	EventHypothesis	{
@Id
@Column(table	=	“origin”,	name	=	"orid")
private	long	origin_id;
@Column(table	= “origin”,	name	=	"lat")
private	double	latitude;
@Column(table	= “origerr”,	name	=	"smajax")
private	double	semi_major_error_axis;

…
}

The	Entity	annotation	indicates	that	this	Java	object	will	be	persisted.	The	Table	
and	SecondaryTables	annotations indicate	that	this	object	will	be	populated	with	
data	from	the	origin table	joined	with	the	origerr table	via	the	orid column.	The	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 17 of 28

Id annotation	indicates	that	the	origin_id member	variable	is	the	id	for	this	class,	
and	the	Column annotations	are	used	to	convey	information	about	the	columns	
in	the	database	that	will	populate	the	corresponding	data	members.	

This	is	a	trivial	example,	but	it	illustrates	the	simplicity	of	mapping	columns	in	
database	tables	to	elements	in	a	Java	class.	

4.4.2.1.5. Retrieving data

Now	that	a	Java	class	exists	to	contain	the	data	retrieved	from	the	database,	that	
data	must	be	retrieved.	Hibernate	offers	two	ways	to	retrieve	data	from	the	
database:	querying	via	HQL	(Hibernate	Query	Language)	or	building	up	Criteria	
objects.	For	this	phase	of	the	prototype	exploration,	HQL	was	used.	This	is	how	
HQL	is	utilized	within	the	Java	code:

session.createQuery("from	EventHypothesis	where	origin_id	=	2719").list();		

The	SESSION variable	above	represents	a	Hibernate	session,	EVENTHYPOTHESIS is	
the	name	of	a	Java	class,	and	ORIGIN_ID is	the	name	of	a	variable	within	that	class.	
A	benefit of	this	HQL	language is	that	class	names	and	member	variable	names	
are	specified,	not	database	tables	and	columns,	and	it	is	fully	object-oriented	and	
understands	notions	like	inheritance,	polymorphism,	and	association.	However,	
HQL	has	a	SQL	“feel”	that	is	intuitive	to	users	and	developers	accustomed	to	
using	SQL.	

Hibernate	uses	the	notion	of	SQL	“dialects”	in	order	to	interface	with	different	
database	implementations.	By	using	HQL,	the	query	code	does	not	need	to	
change	whenever	the	underlying	database	changes since	Hibernate	handles	the	
mapping	between	HQL	and	the	appropriate	dialect.	

4.4.2.2. ODB

4.4.2.2.1. Installing ODB

Because	ODB	is	written	in	C++,	installation	involved	untarring	ODB’s	Common	
Core	library,	Oracle	library,	and	ODB	Compiler	and	building	each	one	using	its	
supplied	Makefile.	Installation	also	involved	untarring	Boost	C++	source	libraries	
to	assess	its	seamless	integration	with	ODB.	The	ODB	software	distribution	
included	a	variety	of	ODB	examples	highlighting	database	access,	querying	the	
database,	using	C++	containers	comprised	of	database	data,	using	inheritance,	
etc.	Thus,	it	was	straightforward	verifying	the	installation	and	learning	about	
basic	ODB	functionality	once	the	supplied	ODB	examples	were	ultimately	built	
and	successfully	ran	against	the	Oracle	database.				

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 18 of 28

4.4.2.2.2. Connecting to the Oracle database

ODB	manages	the	information	needed	to	connect	to	the	database	via	a	set	of	
database	parameters	supplied	at	runtime	on	the	command	line	(--user	lewisje,	
etc.)	or	in	a	configuration	file,	such	as:

<!-- Database	connection	settings	-->
<property	name="user">lewisje</property>
<property	name="	password">******</property>
<property	name=”service”>kbdb.world</property>
<property	name=”host”>bambi.sandia.gov</property>
<property	name=”port”>1521</property>

There	are	other	available	database	parameters,	but	these	were	the	minimum	
needed	to	connect	to	the	Oracle	database.	

4.4.2.2.3. Mapping database data to C++ objects

ODB	makes	use	of	its	pragma-based	language	to	capture	database-specific	
information	about	C++	data	types.	The	ODB	compiler,	not	to	be	confused	with	
the	C++	compiler,	uses	these	pragmas	to	automatically	generate	the	C++	code	
that	performs	the	conversion	between	persistent	classes	and	their	database	
representation.	In	the	nominal	case,	a	C++	class	is	manually created	containing	
pragmas	used	to	generate	the	C++	conversion	code	and	database	SQL	TABLE	
definition.	However,	when	a	database	SQL	TABLE	definition	already	exists,	a	C++	
class	is	manually created, but	must	conform	to	the existing database
representation.		That	is,	each	of	the	C++	class’	attribute	data	types	must	conform
to	the	SQL	TABLE’s attribute	types.	For	reference,	one	must	consult	ODB	
conversion	tables	mapping	RDBMS	vendor-specific	table	attribute	types	to	C++	
data	types.

[Note:	The	ODB	compiler	is	a	C++	compiler	except	that	it	produces	C++	source	
code	in	lieu	of	assembly	or	machine	code.	As	a	result,	the	ODB	compiler	is	
capable	of	parsing	any	standard	C++	code.]	

4.4.2.2.4. Mapping using pragma language

ODB’s	pragma	language	has	the	following	syntax:

#pragma db qualifier [specifier specifier …]

The	qualifier tells	the	ODB	compiler	what	kind	of	C++	construct	this	pragma	
describes.	For	instance,	a	pragma	with	the	object qualifier	describes	the	
persistent	object	type.	That	is,	it	tells	the	ODB	complier	the	C++	class	it	describes	
is	a	persistent	class.	The	specifier,	on	the	other	hand,	informs	the	ODB	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 19 of 28

compiler	about	a	particular	database-related	property	of	the	C++	declaration.	
For	instance,	the	member id specifier	tells	the	ODB	compiler	that	this	member	
contains	the	object’s	identifier.	

ODB’s	pragma	language	provides	other	qualifiers	and	specifiers	not	included	
herein,	but	may	be	referenced	within	C++	Object	Persistence	with	ODBmanual.	

4.4.2.2.5. Mapping in practice

To	demonstrate	ODB’s	pragma	language	in	our	first	example,	Figure	1 – Origin	
Class exhibits	a	C++	persistent	class,	representing	the	origin database	table	

containing	two	pragmas:	1)	#pragma db object;	and	2)	#pragma db id.

// origin.hxx
//

#include <odb/core.hxx>

#pragma db object
class origin
{
 origin () {}

 #pragma db member id
 unsigned int orid;

 std::string algorithm;
 std::string auth;
 signed int commid;
 .
 .
};

Figure	1 – Origin Class	

The	above	example	can	easily	be	extended	in	the	event	origin has	
relationship(s)	with	other	persistent	objects	(i.e.,	unidirectional,	bidirectional).	
For	instance,	as	seen	in	Figure	2 – Origerr	Class origin now	has	an	association	
with	an	origerr C++	persistent	class	representing	the	origerr database	
table.	

// origin.hxx
//

#include <odb/core.hxx>

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 20 of 28

class origerr;

#pragma db object
class origin
{
 origin () {}

 #pragma db member id
 unsigned int orid;

 std::string algorithm;
 std::string auth;
 signed int commid;
 .
 .
 #pragma db not_null
 shared_ptr<origerr> origin_origerr;
};

Figure	2 – Origerr Class

The	only	notable	line	in	Figure	2 – Origerr	Class is	the	#pragma db not_null
which	tells	the	ODB	complier	the	shared_ptr always	points	to	a	valid	object.	

To	compile	the	origin.hxxwe	created above	and	generate	the	support	code	
for	the	Oracle	database,	we	invoke	the	ODB	compiler	which	produces	three	C++	
files:	origin-odb.hxx,	origin-odb.ixx,	and	origin-odb.cxx.	These	files	typically	
contain	types	and	functions	used	to	support	the	object-relational	mapping	and	
are	not	directly	used.	Rather,	origin-odb.hxx	is	included	in	C++	files	where	one	is	
performing	database	operations	with	classes	from	origin.hxx	as	well	as	
compiling	origin-odb.cxx	and	linking	the	resulting	object	file	to	your	application.	

To	demonstrate	ODB’s	pragma	language	in	our	second	example,	we	create	an	
ODB	view	which	is	a	C++	class embodying	one	or	more	database	tables	which	
typically	includes	a	subset	of	data	members	from	each	table.	For	instance,	to	
extend	our	origin example	seen in	Figure	1,	an	event_hypothesis is	

created	consisting	of	data	members	from	both	origin and	origerr database	
tables	as	can	be	seen	in	Figure	3 – Event	Hypothesis	Class.	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 21 of 28

#pragma db view object(origin) object(origerr)
class event_hypothesis
{
 event_hypothesis () {}

 unsigned int orid;
 float lat;
 .
 .
 #pragma db column(origerr::commid)
 signed int commid;
 float smajax;
 .
 .
};

Figure	3 – Event	Hypothesis Class

The	complete	syntax	of	the	db view object pragma	is	shown	below:

object(name	[:	join-condition])

The	name is	the	qualified	persistent	class	name	that	has	been	defined	previously.	

The	optional	join-condition provides	criteria	used	to	associate	a	table	with	
any	of	the	previously	associated	tables.	If	left	unspecified,	the	ODB	compiler	tries	
to	come	up	with	a	join	condition	automatically.	

Finally,	the	db column pragma	is	used	to	disambiguate	data	members	with	the	
same	name.	

4.4.2.2.6. Retrieving data

ODB	offers	two	means	to	retrieve	data	from	the	database	using:	1)	ODB	C++	
database class	query()method; and	2)	native	SQL	SELECT statements.	For	

this	phase	of	the	prototype	exploration,	the	query()method was	used.	This	is	
how	the	query()method is	utilized	within	the	C++	code:

typedef odb::query<origin> query;
typedef odb::result<origin> result;
.
.
transaction t (db->begin());

result r (db->query<origin> (query::orid == 1224466));

t.commit();

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 22 of 28

The	two	typedefs create	convenient	aliases	for	two	template	instantiations	
used	throughout	the	source	code.	The	first	is	the	query	type	for	the	origin

objects	and	the	second	is	the	result type	for	that	query.	

A	new	transaction begins	and	the	query() database	method	is	invoked	by	

providing	a	query	expression	(query::orid == 1224466)which	limits	the	
returned	objects	to	one	originwhose	orid is	1224466. The	transaction	is	
closed	by	calling	commit.

A	benefit	of	using	the	database class	query()method	is	that	class	names	and	
member	variable	names	are	specified,	not	database	tables	and	columns.	And	it	
provides	users	and	developers	an	intuitive	member	attribute	- operator	-
expression	notation.	

4.5. Conclusions

This	prototyping	effort	focused	on	surveying	existing	COTS/OSS	software	
solutions	that	support	the	COI’s	need	to	meet the	stated	design	goals.	A	range	of	
database abstraction	solutions	were	surveyed,	and	ORM	software	seems	to	be	
the	best	fit	for	the	COI	needs,	specifically	the	Hibernate	and	ODB ORMs.	

ORMs	provide	a	decoupling	of	the	application	data	model	from	the	physical	data	
model	through	a	mapping	mechanism.	Because	applications	go	through	the	COI	
to	interact	with	the	database,	changes	to	the	underlying	database	can	be	handled	
through	the	COI without	affecting	the	applications.	This	minimizes	the	
dependencies	between	the	applications	and	the	underlying	database	solution,	
which	eases	maintenance	of	the	application	code	and	provides	freedom	to	
optimize	the	database	implementation	without	fear	of breaking	existing	
functionality.		

ORMs	also	provide	optimizations	to	support	performance	requirements	
associated	with	the	retrieval	and	storage	of	data.	This	removes much	of	the	
overhead	of	maintaining	these	optimizations	for	each	database	solution.	

Lastly,	Hibernate	and	ODB provide	a	standardized	query	language	that	can	be	
used	by	applications	regardless	of	the	underlying	data	storage	implementation.	
This	provides	flexibility	should	the	underlying	data	storage	solution	need	to	be	
modified	in	the	future.		

4.6. Follow-On Work

Given	what’s	been	learned	in	E1,	these	are	some	of	the	areas	to	be	explored	as	
part	of	the	follow	on	work	in	the	E2 iteration.	

COMMON OBJECT INTERFACE DECEMBER 2014

SAND-xxxx Page 23 of 28

If	possible,	the	E2	iteration	should	focus	on	a	single	ORM	solution,	to	aid	in	more	
fully	understanding	the	features	provided by	the	chosen	solution.	

The	focus	of	the	COI	prototyping	effort	for	the	E2	iteration	within	elaboration	
should	continue	to	explore	ways	to	support	the	COI	component	of	the	executable	
architecture	deliverable.	This	includes	examining	how	waveform	data	could	be	
handled	by	the	COI	if	an	ORM	is	leveraged	as	well	as	how	the	COI	will	manage	
notifying	subscribers	of	changes	to	data.	

Investigating	an ORM	solution	interfaces	with	more	than	one	database	is	crucial	
to	understanding	how	well	the	ORM	can	support	multiple	database	vendors	
simultaneously.	In	addition,	it	could	be	beneficial	to	explore	if	it’s	possible	to	
support	more	than	one	database	schema	at	a	time.	

While	an	ORM	solution	might	be	implemented	in	a	single	language,	it	is	worth	
investigating	how	an	ORM	could	facilitate	accessing	data	via	candidate	scripting	
languages	(e.g.	Python,	Perl).	

Performance	assessments	that	compare	an	ORM	solution	to	embedded	SQL	are	
needed.	In	addition,	existing	ORM	support	for	other	features	of	the	COI	(e.g.	
managing	concurrent	access,	caching,	transaction	and	connection	management,	
etc.)	merit	further	investigation.	

Lastly,	data	provenance	is	a	new	addition	to	the	modernized	system	that	will	
need	to	be	supported	by	the	COI.	Further	investigation	into	solutions	that	
support the	persistence	of	provenance	related	data	should	be	a	part	of	future
iteration	efforts.

REFERENCES DECEMBER 2014

SAND-xxxx Page 24 of 28

REFERENCES

1. The	Object-Relational	Impedance	Mismatch,	Agile	Data	
(http://www.agiledata.org/essays/impedanceMismatch.html)

2. Orm	Hate,	Martin	Fowler	(http://martinfowler.com/bliki/OrmHate.html)

3. The	Design	of	a	Robust	Persistence	Layer	for	Relational	Databases,	Scott	W.	Ambler	
(http://www.ambysoft.com/downloads/persistenceLayer.pdf)

4. Encapsulating	Database	Access:	An	Agile	‘Best	Practice’,	Agile	Data,
(http://www.agiledata.org/essays/implementationStrategies.html)

5. Object-relational	impedance	mismatch,	Wikipedia,	
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

6. Java	annotation,	Wikipedia	(http://en.wikipedia.org/wiki/Java_annotations)

http://en.wikipedia.org/wiki/Java_annotations
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://www.agiledata.org/essays/implementationStrategies.html
http://www.ambysoft.com/downloads/persistenceLayer.pdf
http://www.agiledata.org/essays/impedanceMismatch.html

REFERENCES DECEMBER 2014

SAND-xxxx Page 25 of 28

This	page	intentionally	left	blank.

APPENDIX A. SUMMARY OF INITIAL SURVEY DECEMBER 2014

Page 26 of 28

APPENDIX A. SUMMARY OF INITIAL SURVEY

Table	1. COI	Survey	Summary

Candidate Solution Solution Type URL Summary Assessment

Hibernate Java Object
Relational Mapping
(ORM) OSS

http://www.hibernate.org/orm Advantages: Leading ORM candidate for Java. Hibernate Query Language (HQL) could provide both application and researcher level access to underlying COI
objects. JPA provider.
Disadvantages: A dependence on HQL could introduce a tight coupling.

Open JPA Java ORM OSS http://openjpa.apache.org/ Advantages: JPA provider.
Disadvantages: ORM features supported through embedded SQL. Not a prevalent software solution.

Apache Cayenne Java ORM OSS http://cayenne.apache.org/ Advantages: Supports Remote Object Persistence
Disadvantages: CayenneModeler required for mapping. Not a prevalent software solution.

Apache Empire-DB Java RDBMS
Abstraction OSS

http://empire-db.apache.org/ Advantages: Database interactions more easily optimized since interactions are at such a low level.
Disadvantages: Database abstraction layer (not an ORM). SQL-centric. Not a prevalent software solution.

Apache Torque Java ORM OSS http://db.apache.org/torque/t
orque-4.0/index.html

Advantages: Uses XML that describes the database schema, which avoids reliance on reflection.
Disadvantages: Requires that domain model extend Torque specific classes. Not a prevalent software solution.

ODB C++ ORM OSS http://codesynthesis.com/prod
ucts/odb/

Advantages: Leading ORM candidate for C++. Does not require manual entry of mapping code.
Disadvantages: Manufactured by Code Synthesis, located in South Africa. Does not provide C++ object to relational database mapping for existing DB tables.

QxORM C++ ORM OSS http://www.qxorm.com/ Advantages: Supports object relational mapping with MySQL, SQLite, PostgreSQL, Oracle, and SQL Server databases.
Disadvantages: Market usage is unknown and documentation is limited.

http://www.qxorm.com/
http://codesynthesis.com/products/odb/
http://codesynthesis.com/products/odb/
http://db.apache.org/torque/torque-4.0/index.html
http://db.apache.org/torque/torque-4.0/index.html
http://empire-db.apache.org/
http://cayenne.apache.org/
http://openjpa.apache.org/
http://www.hibernate.org/orm

APPENDIX A. SUMMARY OF INITIAL SURVEY DECEMBER 2014

Page 27 of 28

This	page	intentionally	left	blank.

APPENDIX A. SUMMARY OF INITIAL SURVEY

Page 28 of 28

This	is	the	last	page	of	the	document.

